(10 Marks)

(10 Marks)

M.Tech. Degree Examination, December 2010 **Design of Analog and Mixed Mode VLSI Circuits**

Max. Marks:100 Time: 3 hrs.

Note: 1. Answer any FIVE full questions.

2. Missing data, if any, may be assumed suitably.

- a. Explain in detail the second order effects of MOS device. (10 Marks) 1
 - b. Explain the operation of common gate stage amplifier. Derive an expression for small signal (10 Marks) gain and draw its equivalent circuit.
- a. Derive an expression for voltage gain of a common source stage with resistive load. 2

(09 Marks) b. Calculate the V_{out} for $V_{in} = 1.2V$ in the source follower circuit, if (W/L) = 20/0.5,

- $I_D = 200 \mu A$, $V_{TH} = 0.6 V$, $\mu_{nCox} 50 \mu A/V^2$. (05 Marks)
- Explain the cascade amplifier and compare with folded cascade amplifier. (06 Marks)
- Explain the operation of MOS implemented current sink and source. Hence, explain its 3 (10 Marks) characteristics.
 - b. Design a self biased high swing cascade current sink for a given $V_{min} = 0.5V$, choose $V_{ON}=0.25V$, $i_{out}=250 \mu A$. Draw the circuit diagram. (10 Marks)
- Explain the general principle of the band gap reference. Derive an expression for reference voltage of a conventional band gap reference. (10 Marks)
 - b. Explain the base principle and the operation of sense amplifier, with a neat sketch. (10 Marks)
- a. Define the following terms with respect to DAC: 5
 - i) Full scale ii) Dynamic range iii) Signal to noise ratio iv) Integral non-linearity
 - (06 Marks) v) Differential non-linearity. b. Explain the R - 2R DAC. (04 Marks)
 - Explain in detail, with neat diagrams, successive approximation ADC.
- (10 Marks) Explain the operation of sample and hold circuit, with reference to sample mode, hold mode 6
 - and operture error. What is PLL? Explain the open loop and closed loop transfer function.
- Design and explain procedure for the two stage CMOS op-AMP. (10 Marks) 7
 - What is an oscillator? What are its required conditions? For the Colpitt's oscillator, prove

that
$$g_m R_p = \frac{(c_1 + c_2)^2}{c_1 c_2}$$
. (10 Marks)

Write short notes on: 8

- (07 Marks) Mixer
- Wilson current source (07 Marks) b. (06 Marks) Gilbert cell